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Abstract

Purpose: Proton therapy for prostate cancer may reduce bowel dose and risk of bowel

symptoms relative to photon-based methods. Here, we determined the effect of using a

biodegradable, injectable hydrogel spacer on rectal dose on plans for treating prostate

cancer with intensity-modulated proton therapy (IMPT) or passive scattering proton

therapy (PSPT).

Materials and Methods: Pairs of IMPT and PSPT plans for 9 patients were created from

fused computed tomography/magnetic resonance imaging scans obtained before and

after spacer injection. Calculated values of rectal V40, V60, V70, V80, and maximum

dose (Dmax) were compared with Wilcoxon signed rank tests. Displacements at the

base (BP), midgland (MP), and apex (AP) of the prostate relative to the anterior rectal

wall with the spacer in place were averaged for each patient and correlated with V70 by

using linear regression models.

Results: The presence of a spacer reduced all dosimetric parameters for both PSPT

and IMPT, with the greatest difference in V70, which was 81.1% lower for PSPT-with-

spacer than for IMPT-without-spacer. Median displacements at BP, MP, and AP were 12

mm (range 7-19), 2 mm (range 0-4), and 1 mm (range 0-5) without the spacer and 19 mm

(range 12-23), 10 mm (range 8-16), and 7 mm (range 2-12) with the spacer. Modest

linear trends were noted between rectal V70 and displacement for IMPT-with-spacer and

PSPT-with-spacer. When displacement was �8 mm, V70 was �5.1% for IMPT-with-

spacer and PSPT-with-spacer.

Conclusion: Use of biodegradable hydrogel spacers for prostate cancer treatment

provides a significant reduction of radiation dose to the rectum with proton therapy.

Significant reductions in rectal dose occurred in both PSPT and IMPT plans, with the

greatest reduction for IMPT-with-spacer relative to PSPT alone. Prospective studies are

ongoing to assess the clinical impact of reducing rectal dose with hydrogel spacers.
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Introduction
Patients receiving radiation therapy for prostate cancer are at risk of developing

treatment-related rectal toxicity, particularly as hypofractionated and stereotactic ablative

approaches have become more prominent. Toxicity can manifest as rectal bleeding or
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bowel urgency, and the risk correlates with dosimetric parameters such as overall dose and the volume of rectum receiving at

least 70 Gy (rectal V70) [1–3]. The increase in fractional doses raises concerns regarding greater rectal toxicity, but longer-

term results are needed to clarify this issue [4]. Approaches to minimize rectal radiation doses and thereby reduce treatment-

related morbidity have become increasingly important in the management of prostate cancer.

Proton therapy has been used as a strategy to minimize radiation dose to adjacent structures including the rectum [5–7].

Prior reports indicate that rectal volumes receiving 10 to 80 Gy are significantly lower with proton therapy (eg, V70 ¼ 7.9%)

than with intensity-modulated (photon) radiation therapy (IMRT) (eg, V70 ¼ 14%) [5], although others have questioned

whether proton therapy alone is sufficient to reduce the rectal volume receiving high radiation doses [8, 9]. The 2 primary

proton modalities, passive scattering proton therapy (PSPT) and intensity-modulated proton therapy (IMPT), have been

compared for their relative ability to spare the rectum [10, 11]. An emerging approach aimed at further rectal sparing involves

the use of biodegradable hydrogel spacers that physically displace the prostate from the rectal wall during treatment [11–16].

In one randomized trial, use of such a spacer led to a relative reduction in mean rectal V70 of 74% [17]. These studies suggest

that significant dosimetric benefit requires at least 7- to 15-mm separation between the prostate and rectal wall [13, 18–22].

The purpose of this study is to determine the effect of a biodegradable, injectable hydrogel spacer on rectal dose in

treatment plans for PSPT and IMPT for prostate cancer. We analyzed a variety of clinically relevant dosimetric parameters for

both modalities in the presence and absence of these spacers, and we correlated the extent of displacement between the

prostate and rectal wall (with the spacer in place) with rectal V70 to determine the optimal amount of displacement in terms of

reducing rectal dose in both modalities.

Materials and Methods
For this dosimetric comparison study, we obtained de-identified diagnostic computed tomography (CT) and magnetic

resonance imaging (MRI) scans from 12 patients with prostate cancer from a previous multicenter randomized trial [17] who

had a hydrogel spacer injected to separate the prostate and seminal vesicles from anterior rectum (SpaceOAR System,

Augmenix Inc, Waltham, Massachusetts). Each patient’s preinjection CT and MR images were fused, and postinjection CT

and MR images were fused, such that each patient had pairs of fused images. This study was conducted under institutional

review board approval.

IMPT and PSPT plans were created at The University of Texas MD Anderson Cancer Center from the fused preinjection

and fused postinjection images for each patient by using Eclipse treatment planning system (version 13.7, Varian Medical

Systems, Palo Alto, California). Left lateral and right lateral beams were used for IMPT and PSPT plans. Each patient was

assumed to have high-risk prostate cancer and thus the clinical target volume (CTV) included prostate and seminal vesicles

and was to be treated to a prescribed dose of 78 Gy(RBE). The CTV to planning target volume (PTV) expansion was 1.2 cm

laterally, 0.6 cm anteriorly, 0.4 cm posteriorly, and 0.5 cm superiorly/inferiorly. Rectal dose constraints were prespecified as

follows: the volume of rectum receiving 40 Gy or more (V40) was to be no more than 55%; the V60, �35%; the V70, �15%; the

V80, �5%; and the maximum dose to the rectum (Dmax) was �82 Gy.

Rectal V40, V60, V70, V80, and Dmax were calculated for each plan and compared on the preinjection and postinjection

IMPT and PSPT plans by using nonparametric Wilcoxon rank sum tests. The minimum displacements were measured (3

values) on axial scans between the anterior rectum and the prostate base (BP), anterior rectum to midgland (MP), and anterior

rectum to apex (AP) for each patient before and after the spacer injection. These 3 values of displacements at BP, MP, and AP

were averaged across patients and the means correlated with V70 by linear regression. Measurements were obtained by

creating a new contour defined as CTVþ posterior margin. The posterior margin was increased until the contour overlapped

with the rectum to minimize potential errors by manual measurements (Figure 1C). Statistical analyses were performed with

SPSS (version 24.0, IBM, Armonk, New York).

Results
Patients (9 of 12) meeting the prespecified rectal dose constraints were included in this analysis. The volume of hydrogel

spacer injected for each patient is shown is Table 1. Dosimetric data for excluded patients (3 of 12) who did not meet the

prespecified rectal dose constraints are included in Table 2. For these 3 patients, rectal dose constraints were not met with

PSPT-without-spacer plans. However, the addition of rectal spacers allowed these constraints to be achieved. At least 95% of

the defined PTVs for all plans received the total prescription dose of 78 Gy. Representative contours of the rectum, prostate,

seminal vesicles, and spacer, along with the planes of the BP, MP, and AP of a patient with and without a spacer in place, plus
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the respective isodose contours in an IMPT plan, are shown in Figure 1. An axial slice clarifying the method of calculating

minimum displacement from MP to the anterior rectum is shown. Figure 2 shows the dose-volume histogram for a

representative patient in our study for plans using PSPT and IMPT with and without spacer.

The dosimetric variables for the PSPT and IMPT plans, with and without the spacer in place, are shown in Figure 3. The

V70 values showed the greatest differences among the 4 sets of plans, with V70 of 9.9% for the PSPT-without-spacer plan,

8.5% for the IMPT-without-spacer plan, 1.5% for the PSPT-with-spacer plan, and 1.4% for the IMPT-with-spacer plan. The

V40, V60, V70, V80, and Dmax values were all significantly lower in the PSPT-with-spacer plans than in the PSPT-without-

spacer plans (P ¼ .008 for V40, V60, and V70; P ¼ .028 for V80; and P ¼ .015 for Dmax). Without the spacer, PSPT plans

produced significantly lower V80 than IMPT plans (P ¼ .043), while IMPT plans produced significantly lower V60 and V70 than

the PSPT plans (P ¼ .021). These variables were also significantly lower in the PSPT-with-spacer plans than in the IMPT-

without-spacer plans (P ¼ .008 for V60 and V70; P ¼ .012 for V80). The IMPT-with-spacer plans produced lower values of

V40, V60, V70, V80, and Dmax than the PSPT-without-spacer plans (P ¼ .008 for V40, V60 and V70; P ¼ .043 for V80;

Figure 1. Sagittal cross-sections of fused images from a patient with prostate cancer indicate the relative positions and sizes of the contoured structures

with a hydrogel spacer (A) and without a hydrogel spacer in place (B). The method for calculating displacement from the anterior rectum (light green

contour) to the midgland of the prostate (blue contour). (C) The minimum distance on the axial slice between the 2 structures is calculated.

Measurements were obtained by creating a new contour defined as CTV (blue contour)þ posterior margin (dark green contour). The posterior margin

was increased until the contour overlapped with the rectum to minimize potential errors by manual measurements. This method was repeated at 2 more

axial slices at the MG and AP. Abbreviations: AP, prostate apex; BP, prostate base; CTV, clinical target volume; HG, hydrogel spacer; MP, prostate

midgland; P, prostate; R, rectum; SV, seminal vesicles.

Table 1. Injected volume of hydrogel spacer.

Patient Hydrogel volume (mL)

1a 10.1

2 9.7

3 10.5

4 9.6

5 10.3

6 12

7 11.6

8 12.8

9 12.4

10a 11.7

11 10.5

12a 11.7

Mean 6 SD 10.9 6 1.1
aPatients not included in dosimetric analysis due to not meeting prespecified rectal dose constraints.
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P ¼ .021 for Dmax). The IMPT-with-spacer plans produced lower V40 and V60 than did the PSPT-with-spacer plans (P ¼ .028

and P ¼ .013), but produced comparable V70, V80, and Dmax (P ¼ .155, P ¼ .414, and P ¼ .594).

All images obtained with the spacers in place revealed increased displacement relative to the images without spacers, at

the BP (median, 19 mm versus 12 mm), MP (median, 10 mm versus 2 mm), and AP (median, 7 mm versus 1 mm) (Table 3).

Without the spacer in place, no linear trends were found for the PSPT plans (PSPT�HG [hydrogel spacer]) (R2 ¼ 0.0002) or

the IMPT plans (IMPT�HG) (R2 ¼ 0.03) (Figure 4). With the spacers in place, modest linear trends were noted between V70

and average displacement for both the PSPT plans (PSPTþHG) (R2 ¼ 0.54) and the IMPT plans (IMPTþHG) (R2 ¼ 0.63).

When the mean displacement at the BP was �8.0 mm, the V70 in both the PSPT and IMPT plans was �5.1%. When the mean

displacement at the BP was �14.3 mm, the V70 in both the PSPT and IMPT plans was �0.2%.

Discussion
Strategies to reduce the rectal dose during radiation therapy for prostate cancer are needed, particularly with the increasing

use of hypofractionated and stereotactic ablative techniques. Here we present a dosimetric analysis of rectal dose sparing

when using biodegradable, injectable hydrogel spacers combined with either PSPT or IMPT. Our results suggest that a

prostate-to-rectum displacement of at least 8 mm provides significant reductions in clinically relevant rectal dose parameters.

Use of PSPT with a spacer also led to a greater reduction in rectal dose than IMPT without a spacer. Collectively, these

findings strengthen our understanding of dosimetric considerations when delivering proton therapy in combination with

biodegradable hydrogel spacers for prostate cancer treatment.

Our data are consistent with previous comparisons of IMRT with IMPT in demonstrating rectal dose reduction with

biodegradable spacers. Absolute reductions of 8% to 10% were achieved for rectal V70 after spacer placement, with V70

values of 10% to 14% without a spacer versus 2% to 4% with a spacer [13–15, 17]. We found that the rectal V70 without a

spacer was 8.5% to 10% depending on the proton modality used and 1.5% with a spacer. These results suggest that the use of

biodegradable hydrogel spacers can improve dosimetry for both proton therapy (IMPT, PSPT) and photon therapy (IMRT).

IMPT can reduce the rectal dose relative to PSPT in the absence of spacers [10], as we observed for V60 and V70 in this

study. These reductions may be attributed to more precise dose deposition achieved with IMPT, which allows avoidance of

normal structures with complex, curved geometries such as the seminal vesicles; IMPT also uses a ‘‘layer-by-layer’’ approach

to deliver radiation to a target volume [23]. In the present study, including the seminal vesicles in the CTV contributed to the

rectal doses being higher in the PSPT-without-spacer plans. Nevertheless, the PSPT-with-spacer plans led to superior rectal

dose reductions, compared with the IMPT-without-spacer plans, for all rectal dose parameters examined, and they were

Table 2. Dosimetric parameters for the 3 patients who did not originally meet rectal dose constraints.

Rectal dosimetric parameter PSPT�HG PSPTþHG IMPT�HG IMPTþHG

Patient 1

V40 (%) 41.8 35.5 33.4 26.6

V60 (%) 26.1 18.5 14.1 6.2

V70 (%) 15.9 9.7 5 1

V80 (%) 0.61 1.2 0.1 0

Dmax (%) 81.67 82 80.64 77.33

Patient 2

V40 (%) 52.5 46.2 33.6 27.3

V60 (%) 36.3 27.6 16.2 8.6

V70 (%) 25.4 16.7 6.3 2.1

V80 (%) 4.8 0.7 0 0

Dmax (%) 82.88 80.41 80.85 77.1

Patient 3

V40 (%) 47.2 42.1 35.9 27.1

V60 (%) 31.2 23.7 15.6 6.2

V70 (%) 20.6 13.3 5.9 1

V80 (%) 1.2 1.7 0.7 0

Dmax (%) 81.08 81.95 81.66 74.95

Abbreviations: Dmax, maximum dose; HG, hydrogel spacer; IMPT, intensity-modulated proton therapy; PSPT, passive scattering proton therapy.
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Figure 2. Dose-volume histogram for prostate, rectum, and seminal vesicles for representative patient (A); isodose lines for PSPT without spacer (B),

PSPT with spacer (C), IMPT without spacer (D), and IMPT with spacer (E). Normal tissues depicted with colorwash include prostate (blue), seminal

vesicles (orange), and rectum (green). Abbreviations: IMPT, intensity-modulated proton therapy; PSPT, passive scattering proton therapy.

Figure 3. Rectal dosimetric values for PSPT and IMPT plans, each

with or without spacer. Bars indicate means and error bars represent

standard deviations. *P , .05 by the Wilcoxon rank sum test.

Abbreviations: Dmax, maximum dose; HG, hydrogel spacer; IMPT,

intensity-modulated proton therapy; PSPT, passive scattering proton

therapy.
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equivalent to IMPT-with-spacer plans in terms of the volumes of rectum receiving high doses (V70 and V80). Comparing the

IMPT-with-spacer and PSPT-with-spacer plans, however, the use of the spacer did not eliminate differences in all rectal dose

metrics. Notably, the rectal V70 values in our study were comparable for the IMPT-with-spacer and PSPT-with-spacer plans,

which is relevant owing to prospective clinical data demonstrating that rectal V70 was most strongly associated with grade �2

rectal toxicity [24].

Our findings regarding the distances between the AP, MP, and BP and the anterior rectal wall are in agreement with a prior

study that showed that displacement was largest at the base [19]. In seeking the optimal displacement in terms of the greatest

dosimetric effect, we determined that a separation of at least 8 mm resulted in a rectal V70 below 5.1% for both the PSPT and

IMPT plans. Similarly, Christodouleas et al [22] noted that displacement of at least 7 mm with a hydrogel spacer resulted in

rectal V60 values of 3% to 8% for uniform scanning (ie, a scanning beam broadened with magnets and shaped with

collimators) and 0% to 1% for IMPT depending on beam arrangement. Our findings are also comparable with prior data

demonstrating that 9 mm of separation yielded a rectal dose of ,5% for IMPT plans, with a significant decrease in the modeled

probability of grade 2 toxicity [13]. Notable differences between these studies and our study are that we included imaging both

before and after spacer injection, and we delineated our CTV to include the prostate and seminal vesicles to model high-risk

prostate cancer.

This study has several limitations. This was a retrospective analysis of diagnostic images in a limited series of patients,

which limits the statistical power for determining dosimetric correlates. Additional studies with larger patient populations are

necessary to strengthen the conclusions from the current study. Three patients were not included in this analysis because the

prespecified rectal dose constraints could not be met for the PSPT-without-spacer plans; for 1 of these patients, the V60 was

36.3% and the V70 was 25.4%; the V70 values for the 2 other patients were 15.9% and 20.6%. (Our dose constraints were

V60 � 35% and V70 � 15%). We excluded these patients as the plans with failed constraints would not have been used in

actual clinical scenarios and we believed it would reduce the generalizability of the results when comparing dosimetric

parameters. For these patients, constraints were met with IMPT plans or with the addition of a spacer, further demonstrating

Table 3. Displacements at the prostate base, midgland, and apex for patients meeting rectal dose constraints.

Displacement without spacer Displacement with spacer

Base Midgland Apex Base Midgland Apex

Median (range), mm 12 (7–19) 2 (0–4) 1 (1–3) 19 (12–23) 10 (8–16) 7 (2–12)

Mean (SD), mm 13.4 (4.6) 1.9 (1.3) 1.9 (1.8) 17.7 (3.6)a 10.8 (2.6)a 6.4 (3.5)a

aP , .05 with spacer versus without spacer.

Figure 4. Correlation of V70 values with mean displacement for plans created with and without a spacer in place. This displacement was calculated by

using the average of minimum displacements between anterior rectum to BP, anterior rectum to MP, and anterior rectum to AP. The plans shown

include PSPT�HG (dark blue), IMPT�HG (light blue), PSPTþHG (orange), and IMPTþHG (brown). The dashed line represents the rectal dose constraint

at V70 (15%). Abbreviations: AP, prostate apex; BP, prostate base; HG, hydrogel spacer; IMPT, intensity-modulated proton therapy; MP, prostate

midgland; PSPT, passive scattering proton therapy.
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the utility for treatment planning. Also, we did not use laterally oriented fields for the IMPT plans, as robustness considerations

favor laterally oriented fields over anteriorly oriented beam arrangements when spacers are used [13].

We included the entire seminal vesicles in the CTV for all patients to model high-risk prostate cancer to model a worst-case

scenario for estimating rectal dose. However, hydrogel spacers are not commonly used in patients with extracapsular

extension owing to concerns for tumor cell seeding or concerns for creating adequate space [15]. Reducing the size of the

CTV to exclude the seminal vesicles would likely have reduced rectal dose for all plans and may have changed the degree to

which hydrogel spacers provided a dosimetric advantage. Although concern has been expressed about including the full

seminal vesicle volume in the CTV because of increased dose to surrounding normal structures [25, 26], we found that the

plans, particularly the postinjection plans, could meet the rectal dose constraints. A 1.2-cm lateral CTV to PTV expansion was

used for planning. Proton planning often requires additional margins on the distal and proximal side of the CTV to account for

range uncertainties (0.035 3 beam rangeþ 3 mm). When left and right lateral field arrangement is used, the range uncertainty

can be incorporated into the PTV lateral expansion. If a lateral expansion of 5 to 6 mm is used, there is potential to underdose

the distal edge of the CTV in the worst-case scenario for range uncertainty 63.5% [27].

Finally, it remains to be determined whether the lower rectal doses provided by proton therapy, with or without biodegradable

spacers, will translate into clinically meaningful outcomes with regard to reduced rectal toxicity [28]. Future prospective studies

with larger groups of patients will be needed to answer this question. Injectable tissue spacers such as SpaceOAR offer

advantages when compared to existing techniques including endorectal balloons. Endorectal balloons immobilize the prostate to

reduce interfractional motion and improve dosimetry to the rectal wall, such as improving the delineation of the PTV [29].

Reducing the volume of rectum in the intermediate- and high-dose regions by using endorectal balloons has been reported to

reduce late rectal toxicities [30]. However, endorectal balloons must be inserted daily for the duration of radiation therapy, which

introduces challenges both for patient comfort and treatment logistics [31]. In contrast, injectable tissue spacers require a single

injection into the rectoprostatic fascia before starting radiation therapy while also providing a dosimetric benefit to the rectal wall.

A recent randomized trial demonstrated significant reductions in rectal dose with the spacer present, correlating with 75%

reduction in grade .1 rectal toxicity and improved bowel-related quality of life with the spacer [16]. Because the spacer is

biodegradable, no additional procedures are required after completing radiation to remove the device.

In conclusion, use of biodegradable hydrogels offers a complementary approach to allow further rectal dose sparing in

proton therapy for prostate cancer. We observed substantial reductions in rectal dose for both PSPT and IMPT plans when a

spacer was used, and we found that displacement of �8 mm achieved a low V70 for both proton modalities. PSPT with a

hydrogel spacer led to greater rectal dose reductions than IMPT without a spacer and may further reduce rectal toxicities

associated with prostate cancer radiation therapy.
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